
Educational Technology Lab

National and Kapodistrian University of Athens
School of Philosophy

Faculty of Philosophy, Pedagogy and Philosophy
(P.P.P.), Department of Pedagogy

Director: Prof. C. Kynigos

 Ver.: 5.5

“Turtleworlds” Manual

TABLE OF CONTENTS

1. Turtleworlds ... 4

1.1 What is Turtleworlds .. 4

1.2 Description of Turtleworlds .. 4

1.2.1 The turtle and the Canvas ... 4

1.2.2 The Editor ... 4

1.2.3 The Variation tools ... 5

2 Basic control – turtle guidance .. 6

2.1 What is a command? ... 6

2.2 Movement of the turtle on the surface .. 6

2.3 Calculations using Turtleworlds ... 7

2.4 The turtle’s trace .. 8

3 Structural language features in Turtleworlds .. 9

3.1 Primitives .. 9

3.2 Procedures – Sub-procedures ... 9

3.3 Procedure construction .. 10

3.3.1 Procedure inputs .. 11

3.4 Sub-procedures - Hyperprocedures .. 12

4 Dynamic manipulation –Variation tools .. 13

4.1 The Variation Tool .. 13

4.2 The 2D Variation Tool ... 14

4.3 An example ... 16

5 Repetition structure ... 18

6 Recursive procedures ... 20

7 Control commands ... 21

7.1 Control commands in recursion .. 21

Appendix A – Tables of Commands .. 23

Table 1: Turtle control commands ... 23

Table 2: Mathematical function commands in Turtleworlds ... 24

Appendix B – Additional examples for the use of Turtleworlds .. 27

Example 1: Waves with staircases ... 27

Example 2: Diagonal formation of a canonical polygon with recursion .. 28

Example 3: Designing the “Rosette” shape by applying recursion .. 29

Turtleworlds MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 4

1. Turtleworlds

1.1 What is Turtleworlds

Turtleworlds is a tool of symbolic expression in mathematical activity by means of
programming for the creation and tinkering of dynamic graphical models.

1.2 Description of Turtleworlds

Turtleworlds consists of four distinct and yet connected work areas. These areas are called
components. Each component is defined to run specific activities or functions.

1.2.1 The turtle and the Canvas

On the left side of Turtleworlds appears the component ‘Canvas’, which also includes the
turtle. The canvas is a surface on which the turtle leaves its trace as it moves (unless you
prefer it does not leave a trace). The turtle, apart from being a cute pet in Turtleworlds,
constitutes a strictly defined mathematical entity. It is defined by its state, in other words by
a) its position and b) its orientation. Its position is placed in the centre of the circular object
and its orientation is defined by the position of its head. The turtle has a specific trace
colour, which is the colour of its head (black by default), as well as specific size, which is
adjusted by the settings of its component. You may change all these settings when you get
familiar with the construction of models.

1.2.2 The Editor

In the area of the ‘Editor’ command component you may a) write whatever you want, i.e.
text, numbers, arithmetic calculations in the same way we use a blog or word processor and
b) commands and programs that enable the turtle to change its state. This is realized with
the use of a programming language called Logo, that derives from the ancient Greek word
‘Logismos’ (Calculus), and contains a series of commands and constitutes an easy way to
define your own commands; as many as you wish. The commands control and guide the
turtle and define the changing values of its state attributes; position and orientation. Each
time a command is executed, the turtle responds by creating the relevant shape or event on
the “Canvas”.

The “Editor” command area is divided in two parts:

• the area where the instructions to be executed by the turtle are written in a symbolic
way (upper part) and

• the area where responding messages are automatically written by Turtleworlds in
accordance to the realized actions (lower part). These messages refer either to an
error in the structure of commands or to the correct definition of a new procedure,
and function as a feedback and troubleshooting guide for the user.

By using the “Editor” component you may execute commands as follows: place the cursor on
the line where the commands you want to execute are located. Press the key 'insert', usually
found in the keyboard with the initials 'ins'. When you press the usual key 'enter', the cursor
simply changes line without executing any commands. Each time you press the key 'insert',
Logo executes the words of the line on which the cursor is placed from left to right. When a
command is not recognized either due to the fact that it has not been defined or because it

Turtleworlds MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 5

does not belong to the basic commands there is a message projected, saying 'I don't know
how to'.

1.2.3 The Variation tools

With the ‘Variation tool’ and the ‘2D Variation tool’ components you may provoke dynamic
constant change to the shapes created by the turtle when it has been given a parametric
command that you have defined yourself. For stable commands without input variation and
for basic commands even with an input, the variation tools cannot be activated. The
‘Variation tool’ component changes in a constant way the value(s) of input variables that you
have set for a command. At the same time, the shape also changes dynamically. This occurs
when you drag the cursor over the variation slider. With the ‘2D Variation tool’ you may see
what happens in the shape, as you co-vary two variables, on imaginary vertical axes by
freely dragging the cursor on the interface of the component (More information about the
variation tools in Section 4).

The four components can be seen in the following figure (Figure 1):

Figure1: Turtleworlds interface

Turtleworlds MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 6

2 Basic control – turtle guidance

This section describes, through symbolic instructions that are created in the editor area, the
way to control and guide the turtle.

2.1 What is a command?

As mentioned before the turtle is controlled with the application of the commands written in
the “Editor”. The command is the symbolic expression of an instruction which leads to a
specific result when executed. Each command has a unique name and is composed in a
predefined way. A command may be simple, i.e. it can be composed only by using its name
and execute a specific action, or it may include input and output parameters. These
parameters consist of numbers, words or other data. An input command consists of such
data that are indispensable for its execution. An output command is the outcome after its
execution. A command may require none, one or many inputs whereas it can have none
or one output.

In particular, the commands in Turtleworlds are composed as follows:

 CommandName(space)input1(space)input2 etc.

Some basic Turtleworlds commands regarding turtle control will be presented next together
with the way they are composed and executed.

2.2 Movement of the turtle on the surface

In order to move the turtle on “Canvas” a number of movement commands can be used
which define the way and the degree of its movement. For the turtle to move forward by a
specific number of steps the command forward should be used. The command forward has
an input which should be a number and defines the steps the turtle will proceed. This
number is written straight after the command. The result of the command is for the turtle to
move towards the direction of its head in a distance of as many steps as the value of the
number in the command input. As the turtle moves it leaves the relevant trace behind. For
example the command:

Forward(space)50

asks the turtle to move 50 steps forward. For any command written in the “Editor” to be

executed, either the button ins (INSERT) or the button located on the command editor
toolbar should be clicked, while the editor writing indicator (cursor) is on the line of
command. The result of executing the specific command is for the turtle to move 50 steps
forward towards the direction of its head.

The back command which asks the turtle to move a number of steps towards the opposite
direction from the direction of its head, operates in exactly the same way.

Example:

 Back (space)50

For the turtle’s rotation there are the Right and Left commands. These commands take as
input a number which defines the degrees according to which you wish to turn the turtle’s
head. For example the command Right 90 asks the turtle to turn its head 90 degrees to the
right. In the same way the command Left 30 asks the turtle to turn its head 30 degrees to
the left.

Turtleworlds MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 7

 Important tips

1st Tip: Pay attention when composing a command! Between the name of the command and
its input there should be a blank space. For example, if the command ‘Forward 50’ is
written without a blank in between (‘Forward50’) the message on the editor will be «I don’t
know what to do with Forward50» because it does not recognize any command with such a
name.

2nd Tip: Each command may be executed several times as long as the cursor is placed on

the line where the command is written and the button ins or the button is clicked. For
example, you may execute the command Forward 10 then the command Back 30 and then
again the command Forward 10.

3rd Tip: Apart from the individual execution of commands, as mentioned above, there is the
possibility of executing numerous commands simultaneously. The mode of executing
commands is per line. In particular, there are two modes of simultaneous execution of
commands.

1st mode: Serial execution on different lines (from top to bottom).

Let’s say you want to execute the following two lines of command together:

forward 50

forward 30

First you select them:

and then you click on the key ins or the button for Turtleworlds to run them in the
same order from top to bottom.

2nd mode: Serial execution in one line (from left to right)

Another way to run the above two commands is to write them on the same line as follows:

Forward 50 forward 30

They are then executed in the same way as one command on the line was executed (Placing

the cursor on the line and pressing the key ins or the button). Turtleworlds will execute
all the commands in the line from left to right (Pay attention to the spaces between the
commands and their value inputs!).

4th Tip: The commands may take as an input integer, decimal, positive and negative
numbers.

Note: The command forward -20 has the same outcome as the command back 20!

2.3 Calculations using Turtleworlds

The commands in Turtleworlds allow to perform calculations within the commands.

For example the command:

forward 50
forward 30

Turtleworlds MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 8

Forward 50+50

moves the turtle 100 steps forward towards the direction of its head. The program perceives
that the command forward has as an input the result of the addition 50+50. The same
happens with more complex calculations such as:

Forward (50-20)*3/2

The parentheses rules in mathematics apply in complex calculations. Turtleworlds perceives
the calculations as separate commands as well. In other words, instead of using numerical
symbols there are commands that execute the calculation:

Eg. 30+20 is also perceived as sum 30 20

 30-10 is also perceived as difference 30 10

 30 ×10 is also perceived as product 30 10

 30/10 is also perceived as quotient 30 10

The above mode, to firstly denote the name of the result and then the numbers which are
involved in the calculation is very useful when you wish to define calculations as the
following:

Eg. 23 as power 2 3

 5 as root 5

For example, you may execute the command: Forward root 20.

For more mathematical commands see Table 2 in Appendix A.

Note: Calculation commands cannot be executed on their own in the “Editor”. For example,
if the root 36 is run there will appear the message «You don't say what to do with 6». This
means that the command root was run with the result of 6 but the program does not
recognize what to do with this number. This happens because the calculation commands
have one output; the result of the calculation that must apply somewhere. Generally, the
commands that have an output cannot be used individually but only as input to other
commands.

2.4 The turtle’s trace

As mentioned above, when the turtle moves on the ‘Canvas’, it leaves a trace. This trace can
be controlled by a number of commands. For example, you can define whether the turtle
leaves a trace as it moves or not. This is realized with the commands pendown and penup,
respectively. The command penup turns the turtle’s head white, which means that if the
turtle moves it will leave no trace, whereas in the case of the command pendown the turtle’s
head will turn black and the turtle will leave a trace behind. Furthermore, there is the
command cleargraphics (cg), which deletes anything the turtle has designed so far on the
‘Canvas’ and restores the turtle to its initial position with its head turned upwards, as it was
initially.

Finally, there are several commands regarding the change of colour and density of the
turtle’s trace, included in table 1 of Appendix A.

Turtleworlds MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 9

3 Structural language features in Turtleworlds

3.1 Primitives

Turtleworlds includes a number of commands and functions, as the ones described above
(forward, cleargraphics, right etc.). These commands are called primitives and possess the
following features:

• They run either a command or a function.

• They may take value inputs or not.

• They may have an output value or not.

Some basic typical primitives are presented below:

Procedure Number
of inputs

Type of input
data

Outcome-event

Cleargraphics 0 - Clears the ‘Canvas’ and restores the
turtle in its initial position

Right a 1 number Turns the turtle’s head a degrees right

Left a 1 number Turns the turtle’s head a degrees left

Penup 0 - Raises the turtle’s pen

Pendown 0 - Lowers the turtle’s pen

1st Tip: The commands also have abbreviations. Turtleworlds can understand the commands
even with their names written abbreviated. Eg. the command Cleargrpahics as cg, the
command right 30 as rt 30, the command left 30 as lt 30, e.t.c.

2nd Tip: Executing the command:

ask “Turtle[primitives]

displays on the lower part of the ‘Editor’ all these primitives of Turtleworlds both in English
and Greek.

Also in the Appendix of this manual there is a table with the important procedures as well as
examples of their use.

3.2 Procedures – Sub-procedures

An important feature of Turtleworlds is that it enables the user to create his own commands,
which are called ‘procedures’ and ‘sub-procedures’ in the IT language. A procedure is a
primitive command or a command to which you have given a name of your own choice and
you have defined it so that it runs a number of commands. In other words, Turtleworlds
allows you to create your own additional words-commands besides the existing primitives
and use them wherever and however you wish.

Every time you define a procedure-command it has the same status with the primitive
commands. Thus, you can define a command by using another command you have already
defined. In this way you create a limitless structure of procedures and sub-procedures.

Turtleworlds MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 10

3.3 Procedure construction

Let’s say you have edited the following commands:

Forward 30

Right 90

Forward 50

Left 90

If you run these commands in this order, the following shape is created on the ‘Canvas’:

You can define a procedure that will run the above commands every time in the same order
that it will be called. For this to be realized you give the command “to” and a name of your
choice for the procedure. In a separate line, after the end of the series of commands that
the new procedure will require, it is necessary to enter the word-command “end”. Don’t
forget it! In other words, the code will be:

to stair

Forward 30

Left 90

Forward 50

Left 90

End

The word “to” is a primitive Turtleworlds command which is used for the definition of a new
procedure. On the right of the word “to” the word you have chosen to call the new procedure
is written (in this particular case stair). On the last line the word “end” is written which
informs the system that the procedure initiated with the word “to” has ended. To complete
the definition of the new procedure you must select all the lines and press the key ins or the

button . Then on the lower part of the “Editor” there will appear the message «stair
defined», which means that the procedure stair has been defined. From now on you can use
the word stair as a command. For example, if you write on the ‘Editor’:

stair

and run the command, the 4 commands will automatically be executed and the above shape
will be created on the ‘Canvas’. Now that the procedure stair has been defined you can run
the procedure as many times as you wish. For example, if you run 3 consecutive times the
procedure the following shape will occur:

Turtleworlds MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 11

Advice: The procedures can be named according to your wish, as long as:

1st: It is only one word. The name stair up is not acceptable because it consists of two words
separated with a space. The name stair_up is acceptable.

2nd: It is not a name that corresponds to a primitive Turtleworlds command. For example,
the name forward is not acceptable.

For your own convenience it would be better for the names of the commands to be relevant
with what the procedure denotes.

3.3.1 Procedure inputs

The procedures can have inputs and outputs the same way as Turtleworlds commands. This
is executed with the use of variables. By using a variable, the above procedure can be
realized:

to stair :height

Forward :height

Forward 90

Forward 50

Left 90

End

The height of the stair is now variable and can be defined by the user during the execution
of the procedure. For example, if you run the command as stair 40, a stair is created with a
height of 40 steps.

Attention! Every time you use a variable in the code, the symbol : must precede its name.
After : do not leave a space!

The names of the variables must also be a consecutive word. Another example of the use of
variables is the following:

to stair :height :width

Forward :height

Right 90

Forward :width

Left 90

End

In this example both the height and the width of the stair are variable and defined by values
that are given as inputs at the execution of the command. This procedure can be run as stair
40 80 so that a stair is created with 40 height and 80 width. It is important that you write

Turtleworlds MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 12

the variable values in the order they were defined in the procedure; in the specific example
first write the value of the height and then the value of the width.

Advice: A procedure may have as input as many variables as you wish.

3.4 Sub-procedures - Hyperprocedures

Turtleworlds allows for other procedures to be called within the procedures. Suppose the
aforementioned procedure stair :height :width has been defined.

You may define a new procedure which will execute the following:

to stair :height :width

stair 30 40

stair :height :width

End

The new procedure stair calls the procedure stair twice as a standard command. The first
time it is called with stable values whereas the second time with values that the procedure
stair itself takes as an input.

In this particular case, the procedure stair is called sub-procedure and the staircase
hyperprocedure.

Another example is the following:

to doubleStairs : height :width

stair :height :width

stair :height*2 :width*2

End

The procedure creates initially a stair with the height and width that you have defined as
parameters and then one more stair with double height and width.

The outcome from the execution of the above procedure as:

doubleStairs 20 30

is the following:

Advice: In a hyperprocedure, such as the stair, you can call many different procedures. For
example, if you had also defined a procedure stair_up, you could have called apart from this
one the procedure stair as well within the procedure staircase.

Turtleworlds MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 13

4 Dynamic manipulation –Variation tools

In this section the other two components of Turtleworlds are described; the ‘Variation Tool’
and the ‘2D Variation Tool’.

4.1 The Variation Tool

The ‘Variation Tool’ allows you to dynamically manipulate the variables of a function you
have defined.

For example, you have defined the following procedure:

to staircase :height :width

stair :height :width

stair :height :width

stair :height :width

End

The procedure staircase calls 3 times the sub-procedure stair and creates three consecutive
stairs. It has two variables; :height and :width, which define the height and width of the
stairs. If you run the procedure as staircase 30 20, the turtle draws the following shape:

If you move the mouse into the ‘Canvas’ you will observe a cross appearing. By using this
cross you can left click on any part of the turtle’s trace. Clicking on the trace indicated in the
above example the ‘Variation tool’ (below the ‘Canvas’) acquires two sliders (Figure 2).

In particular, these sliders correspond to the two variables of the stair :height :width
procedure and initially have the values according to which the procedure was run, namely,
:height = 30 and :width = 20. These sliders allow you to dynamically change the variable
values by moving the respective indexes and automatically observe the changes that take
place on the turtle’s trace.

Turtleworlds MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 14

Figure 1: The variation tools corresponding to the height and width variables

From the left and right of the variation height toolbar there are two fields: “From” and “To”
which contain the numbers 15 and 60, respectively. These numbers constitute the limits
within which the height variable values change. You can change these limits and write in the
respective fields the numbers of limits that you wish. There is one more field called “Step”
which contains number 1. This entails that the variation tool can take values which differ by
one unit between the limits you have defined. You may change this as well by applying the
number you wish.

The concept of the variation tool can be applied to the formulation of open-ended problems,
such as:

• Move the indicator that corresponds to the height variation tool and observe the way
the staircase inclination changes.

• Move the indicator that corresponds to the width variation tool and observe the way
the staircase inclination changes.

• Try to figure out the relation between the height and width variables in order for the
staircase to maintain its inclination.

4.2 The 2D Variation Tool

The ‘2D Variation Tool’ allows you to represent two of the variables of a specific procedure
on an orthonormal system of co-ordinates.

Suppose you have defined the staircase procedure that was described above:

to staircase :height :width

stair :height :width

stair :height :width

stair :height :width

The 2
variation

tools

Turtleworlds MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 15

End

You have already activated the ‘Variation tool’. On the left side of each slider there is a red
right angle. By clicking on either side of the angle you can set this variable on the
corresponding axis of the rectangular axis system, represented by the ‘2D Variation Tool’.

Suppose, for example, you want to create an axis system where the vertical axis will be the
height and the horizontal axis will be the stair width. To do this, the following procedure
must be followed:

Allocation of the width variable to the horizontal axis.

Allocation of the height variable to the vertical axis.

The selected sides have changed colour and turned to green.

On the ‘2D Variation Tool’ an orthonormal system with perceptible axes has now been
created, where the vertical axis corresponds to the height variable and the horizontal one to

the width variable of the stair procedure. By pressing the key of the ‘2D Variation Tool’
you can create checkpoints on the axis system. With the key pressed and by clicking on any
point of the variation tool surface, a blue point is created with specific coordinates. The

Press
here

Press
here

Turtleworlds MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 16

height and width variable values have automatically taken the coordinate values of this point
(Figure 3). Moving the blue point on the imaginary axis system both values of the height and
width variation tools change automatically.

Figure 4: A point on the “2D Variation Tool” in Turtleworlds

The button of the ‘2D Variation Tool’ projects a grid on the axis system whereas the

button «clears» the variation tool from all the points that have been created.

Free dragging

If the button is not pressed, dragging the mouse on the surface of the ‘2D Variation
Tool’ with the left key of the mouse continuously pressed you can design lines which
correspond to the changes occurring on the shape created by the turtle.

4.3 An example

Suppose you want to study the fact that the maintenance of the staircase inclination
demands that the ratios of the height and width sizes remain stable. The ‘2D Variation Tool’
helps on the study of the two sizes graphical relation and the inferences concerning the
inclination and graphs of similar amounts. Suppose the ratio equals 3, in other words
height/width=3. Try to place the blue point on the ‘2D Variation Tool’ in a position where the
height/width ratio values equals three. If you place some more blue points in different
positions where the ratio of the two variables equals three, the following point set-up will
occur:

The blue point
coordinates are

(35,30)

Turtleworlds MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 17

Notice that the points make a straight line with a stable inclination. This line also constitutes
the height/width=3 graph function. The rationale of the ‘2D Variation Tool’ can be applied to
the formulation of open-ended problems, such as:

• Move the mouse freely on the surface of the ‘2D Variation Tool’ and try to understand
from the created trace the way the variables correlate in order for certain conditions
to be met.

Turtleworlds MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 18

5 Repetition structure

Turtlewords allows for the use of a repetitive structure in the editor’s code. This structure is
a primitive which is used for the better flow and organization of the code commands.
Suppose you want to define a procedure which results to the formation of a variable shaped
parallelogram. One way to do this is the following:

to parallelogram :a :b :angle

Forward :a

Right :angle

Forward :b

Right 180-:angle

Forward :a

Right :angle

Forward :b

Right 180-:angle

End

This code defines the parallelogram procedure whose commands formulate a parallelogram.
With the use of the repetition structure, the code to be repeated can be written only once.
Therefore, the above code becomes:

to parallelogram :a :b :angle

Repeat 2 [Forward :a

Right :angle

Forward :b

Right 180 - :angle

]

End

The word “repeat” is a Turtleworlds primitive repetition command. The number that follows
it denotes the times the command is repeated (in the specific case 2). The commands inside
the brackets [] are the ones the turtle will repeat as many times as defined by the number.
Generally, the repetition structure is defined as:

Repeat repetition_times [commands_to_be_repeated]

The repetition structure is very useful since with its application lengthy codes with repetitive
commands are avoided. Therefore, it helps in the syntax of a legible and structured code.

Attention!! It is mandatory to close every open bracket.

The commands called upon in the brackets could be any Turtleworlds commands procedures
defined by the user. Moreover, the number of repetitions could be a variable. For example
the following procedure could be defined:

Repeated code!!

Turtleworlds MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 19

to parallelograms :times :a :b :angle

Repeat :times [parallelogram :a :b :angle right 30]

End

The parallelograms procedure repetitively calls the parallelogram procedure, set above, as
many times as the variable value :times defines. Thus, for example, the execution:

Parallelograms 4 30 50 60

Has the following outcome on the ‘Canvas’:

Turtleworlds MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 20

6 Recursive procedures

In the Hyperprocedures and sub-procedures section the way one procedure is called within
another was described. Turtleworlds also allows for a procedure to call itself. This is called
“recursion”. Suppose you have defined the following procedure concerning the formation of a
circle with radius r:

to circle :r

repeat 36 [forward (2*pi*:r)/36 right 10]

end

Suppose you have also defined the procedure:

for butterfly :r

repeat 2 [circle :r rt 180]

end

which formulates two externally tangent circles, as shown in the following figure:

An example of the use of recursion in this procedure, is the following

to butterfly :n :r

if :n < 1 [stop]

repeat 2 [circle :r rt 180]

butterfly :n-1 :r-10

end

What is accomplished with the butterfly procedure above is the formation of two tangent
circles and calling upon itself by applying a radius reduced by 10 (:r–10). This is done for
:n times. Therefore, if you run the procedure as butterfly 5 50, the turtle creates the
following shape:

Recursion: The
procedure calls upon

itself!

Turtleworlds MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 21

7 Control commands

In the butterfly example in the previous section the following command was found within the
code of the procedure:

if :n < 1 [stop]

This is a Turtleworlds control command. These commands allow you to check the code
execution flow of a procedure based on certain conditions that you define. In the specific
case we deal with the “if” command. The “if” command checks the condition that follows
right after (in the specific :n < 1). If the condition applies, the procedure runs the
commands written in the brackets [].

Suppose the following procedure has been defined:

to stair :height :width

If :height < 5 [stop]

Forward :height Right 90 Forward :width Left 90

End

The command If checks at this point if the condition :height < 5 is true. If it is true then it
will run the stop command, otherwise, if it is false it will ignore the brackets and continue
normally with the execution of the following commands. The stop command is a Turtleworlds
primitive command which stops the execution of any procedure run at the same time. Thus,
if the height has a value less than 5, the procedure will immediately stop and the commands
concerning the formation of the stair will not be executed.

So for example, if it is executed as:

stair 4 10

the turtle will not do anything, since the condition is true.

But if it is executed as

stair 6 10

The turtle will create a stair.

An inequality or equation of any two elements can be applied as a condition.

Condition examples:

:height = 5

:height > :width

:height + 3 < 20

7.1 Control commands in recursion

The control commands are very useful in the recursive procedures. For example in the
butterfly procedure of the previous section:

Turtleworlds MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 22

to butterfly :n :r

if :n < 1 [stop]

repeat 2 [circle :r rt 180]

butterfly :n-1 :r-10

end

If there wasn’t for the if command, the butterfly procedure would call upon itself to infinity.
By applying control commands you define when the execution of a recursive procedure
discontinues. Thus, if you run the butterfly procedure as butterfly 5 50, what Turtleworlds
does is the following:

Initially, it runs the butterfly procedure with the values :n=5 and :r=50. The if control
condition checks whether :n is less than 1. When it gets less than 1, the execution of the
procedure will cease. For the time being, this does not apply and therefore the execution
continues formulating two tangent circles with a radius of 50. Next it calls upon itself with
the n value reduced by 1 and the r value reduced by 10. In this case :n=4 and :r=40.

The execution continues in the same way until it calls upon itself for :n=0. Then the control
command will be true and the procedure will cease after it has been run for 5 times (as
many as the n initial value).

The following table shows in detail the :r and :r values during all the recursion running
stages:

Execution flow Value :n Value :r
Control

condition
:n < 1

Recursion command
values

(butterfly :n-1 :r-10)
1st 5 50 FALSE butterfly 4 40

2nd 4 40 FALSE butterfly 3 30

3rd 3 30 FALSE butterfly 2 20

4th 2 20 FALSE butterfly 1 10

5th 1 10 FALSE butterfly 0 0

6th 0 0 TRUE -

Turtleworlds MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 23

Appendix A – Tables of Commands

Table 1: Turtle control commands

Command
Number

of
Inputs

Number
of

Outputs
Description Example

Cleargraphics or
Cg

0 0 Clears the canvas and
restores the turtle to its
initial position

Clean 0 0 Clears the canvas and lets
the turtle in its position

 Home 0 0 Restores the turtle to its
initial position without
deleting what it has
created

Forward number

 or fd number

1 0 Moves the turtle forward
as many steps as the
number value

Forward 10

or fd 10

Back number

 or bk number

1 0 Moves the turtle
backward as many steps
as the number value

Back 10

or bl 10

Right number

or rt number

1 0 Turns the turtle right by
as many degrees as the
number value

Right 90

or rt 90

Left number

or lt number

1 0 Turns the turtle left by as
many degrees as the
number value

Left 90

or lt 90

Penup

or pu

0 0 The turtle ceases to write
on the Canvas

Pendown or pd 0 0 The turtle writes on the
Canvas

Setpencolor[value
1, value2, value3]

1 0 Changes the turtle’s
colour based on certain
colour codes

Setpencolor[255 0
0]

Red colour (for more
colours see below).

Setxy position1
position2

2 0 Places the turtle on the
canvas coordinates
(position1,position2)

Setxy 30 40

SETHEADING
degrees

1 0 Orientates the turtle by as
many degrees as the
degrees input value

SETHEADING 90

Turtleworlds MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 24

Basic colour codes RBG for the turtle’s change of colour

Red 255 0 0

Green 0 255 0

Blue 0 0 255

Black 255 255 255

Yellow 255 255 0

Orange 255 128 0

To see all the colours visit the site http://www.rapidtables.com/web/color/RGB_Color.htm
and choose the relevant codes.

Table 2: Mathematical function commands in Turtleworlds

Pos 0 2 Recalls the turtle’s
position coordinates

XCOR 0 1 Recalls the turtle’s
abscissa position

YCOR 0 1 Recalls the turtle’s
ordinate position

canvaspagewidth 0 1 Recalls the Canvas’ width

canvaspageheight 0 1 Recalls the Canvas’ height

Command
Number

of
Inputs

Number
of

Outputs
Description Example Output

Sum a b 2 1 Gives the sum of the
two numbers set in its
input, i.e. it performs
α+β

Sum 3 5 8

Difference a b 2 1 Gives the difference of
the two numbers set in
its input, i.e. it performs
α-β

Difference 8
3

5

Product a b 2 1 Gives the product of the
two numbers set in its
input, i.e. it performs
α*β

Product 2 4 8

Quotient a b 2 1 Gives the quotient of
the two numbers set in
its input, i.e. it performs
a/b

Quotient 6
3

2

http://www.rapidtables.com/web/color/RGB_Color.htm�

Turtleworlds MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 25

Remainder a b 2 1 Gives the remainder of
division of the two
numbers set in its input.

Remainder
11 2

1

Root number 1 1 Gives the square root of
the number set in its
input

Root 36 6

Power x n 2 1 It raises the x number
to the n power and
returns the result. Thus,
it is xn

Power 2 4 16

Abs number 1 1 It returns the modulus
of the number set in its
input

Abs -10 10

Cos degrees 1 1 It returns the cosine of
the angle set as an
input

Cos 60 0.5

Sin degrees 1 1 It returns the sine of
the angle set as an
input

Sin 60 0.866

Tan degrees 1 1 It returns the tangent
of the angle set as an
input

Tan 180 0

Arccos
argument

1 1 It returns the angle it
calculates from the
inverse cosine based on
the argument set as an
input

Arccos 0.5 60

Arcsin
argument

1 1 It returns the angle it
calculates from the
inverse sine based on
the argument set as an
input

Arcsin 0.5 30

arctan
argument

1 1 It returns the angle it
calculates from the
inverse tangent based
on the argument set as
an input

arctan 1 45

Exp number 1 1 It returns the
exponential function
with a base of e and as
a power the number set
in its input

Exp 1 2.718

Integer
number

1 1 It returns the integer
part of the number set
as an input

Integer 2.8 2

Turtleworlds MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 26

Rounding
number

1 1 It returns the rounding
of the number set in its
input

Rounding
2.3

Rounding
3.8

2

4

pi 0 1 It returns the π (3,14)
number

 3.14

Turtleworlds MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 27

Appendix B – Additional examples for the use of
Turtleworlds

Example 1: Waves with staircases

Write and define the following procedure:

to stair_upper

forward 2

right 90

forward 5

left 90

end

Write and define the following procedure:

to stair_lower

right 90

forward 5

right 90

forward 2

left 180

end

Write and define the following procedure:

to staircase_upper

repeat 5[stair_upper]

end

Write and define the following procedure:

to staircase_lower

repeat 5[stair_lower]

end

Write and define the following procedure:

to staircase_upright

staircase_upper

staircase_lower

end

Write and define the following procedure:

to staircase_reverse

staircase_lower

staircase_upper

Turtleworlds MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 28

end

Write and define the following procedure:

to waves

Repeat 11[staircase_upright staircase_reverse]

end

When the last procedure waves is run, it calls the staircase_upright sub-procedure as well
as the staircase_ reverse sub-procedure which in turn call the staircase_upper sub-
procedure and the staircase_lower sub-procedure with the latter to call next the
stair_upper and stair_lower sub-procedures, respectively. As a consequence, the turtle
creates on the ‘Canvas’ area something that looks like waves, as seen below:

Example 2: Diagonal formation of a canonical polygon with recursion

In the following example the use of recursion is demonstrated for the construction of all the
diagonals of a n-gon.

The defined procedures are the following:

to diagonals :n :s

repeat :n[

design_diagonals :n :s 2

lt ((:n-3)*(180/:n))

fd :s

rt (360/:n)

]

end

to design_diagonals :n :s :k

if :k>(:n-2) [stop]

rt 180/:n

fd length_diagonal :n :s :k

bk length_diagonal :n :s :k

design_diagonals :n :s :k+1

end

to diameter :n :s

Turtleworlds MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 29

output 2*((:s*sin (180*(:n-2)/(2*:n)))/sin (360/:n))

end

to length_diagonal :n :s :k

output (diameter :n :s)*sin (180*:k/:n)

end

The main procedure is the diagonals :n :s, which takes as inputs the number of :n sides of
the polygon and the :s length of the side. Then for each angle of the polygon the procedure
design_diagonals is called which recursively designs the angle’s diagonals. In the following
figure an example of an 8-gon with a length side of 60 is displayed.

The execution is realized with the diagonals 8 60 command.

Example 3: Designing the “Rosette” shape by applying recursion

The rosette design is a complex one constructed on the basis of geometric rules and
functions. First, a number of concentric circles are designed with a radius of twice, three
times and so on, the radius of the inner circle. Next the inner circle is divided into equal
arcs. The cycle chords of these arcs constitute the isosceles triangles bases whose vertexes
are in the next circle. The vertex points of the first line triangles constitute the base points of
the second line triangles. You continue this way until you complete the last line of triangles.

The functions defined in Turtleworlds are the following:

fto rhombus :a :b

make "θ arccos(:b/(2*:a))

lt :θ

repeat 2 [

fd :a rt 2*:θ fd :a rt 180-2*:θ]

rt :θ

end

to rosette :n :a :b

Turtleworlds MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 30

make "θ arccos(:b/(2*:a))

if :θ<90/:n [stop]

repeat :n [

rhombus :a :b

pu fd :b pd

lt 360/:n]

rt :θ fd :a

lt 2*:θ rt :θ-180/:n

rosette :n :a 2*:a*cos(:θ-180/:n)

end

The basic procedure is rosette :n :a :b and its execution as:

rosette 14 31 27

has the following outcome:

Notice:

The present “Manual” has been composed by researchers in the Educational Technology Lab
in cooperation with teachers that have extensively used “Turtleworlds” in the classroom.

	1. Turtleworlds
	1.1 What is Turtleworlds
	1.2 Description of Turtleworlds
	1.2.1 The turtle and the Canvas
	1.2.2 The Editor
	1.2.3 The Variation tools

	2 Basic control – turtle guidance
	2.1 What is a command?
	2.2 Movement of the turtle on the surface
	2.3 Calculations using Turtleworlds
	2.4 The turtle’s trace

	3 Structural language features in Turtleworlds
	3.1 Primitives
	3.2 Procedures – Sub-procedures
	3.3 Procedure construction
	3.3.1 Procedure inputs

	3.4 Sub-procedures - Hyperprocedures

	4 Dynamic manipulation –Variation tools
	4.1 The Variation Tool
	4.2 The 2D Variation Tool
	4.3 An example

	5 Repetition structure
	6 Recursive procedures
	7 Control commands
	7.1 Control commands in recursion

	Appendix A – Tables of Commands
	Table 1: Turtle control commands
	Table 2: Mathematical function commands in Turtleworlds

	Appendix B – Additional examples for the use of Turtleworlds
	Example 1: Waves with staircases
	Example 2: Diagonal formation of a canonical polygon with recursion
	Example 3: Designing the “Rosette” shape by applying recursion

