
Educational Technology Lab

National and Kapodistrian University of Athens

School of Philosophy

Faculty of Philosophy, Pedagogy and Philosophy

(P.P.P.), Department of Pedagogy

Director: Prof. C. Kynigos

Διευθυντής: Καθ. Χ. Κυνηγός

“MaLT+” Manual

TABLE OF CONTENTS

1 MaLT+ ... 4

1.1 What is MaLT+ ... 4

1.2 Description of MaLT+ ... 4

1.2.1 The 3D scene and the avatar .. 4

1.2.2 The Editor ... 5

1.2.3 The Variation tools ... 5

2 Features of the 3D scene .. 6

2.1 Camera controls ... 6

2.2 Scene’s toolbar ... 6

1 Basic control – avatar guidance .. 8

1.1 What is a command? ... 8

1.2 Movement of the avatar on the surface .. 8

1.3 Calculations using MaLT+ ... 10

1.4 The avatar’s trace .. 11

3 Structural language features in MaLT+ ... 12

3.1 Primitives .. 12

3.2 Procedures – Sub-procedures ... 12

3.3 Procedure construction .. 12

3.3.1 Procedure inputs .. 14

3.4 Sub-procedures - Hyperprocedures .. 15

4 Dynamic manipulation –Variation tools .. 16

4.1 The Variation Tool .. 16

1.5 The 2D Variation Tool ... 17

1.6 An example ... 19

2 Repetition structure ... 21

3 Recursive procedures ... 24

4 Conditional commands ... 25

4.1 Control commands in recursion .. 25

5 Other MaLT+ features ... 26

5.1 Save files ... 26

5.2 Open files.. 27

5.3 Other features .. 27

Appendix A – Tables of Commands .. 28

Table 1: Avatar control commands .. 28

Table 2: Programming structures .. 30

Table 3: Mathematical commands .. 32

Appendix B – Additional examples for the use of MaLT+ Error! Bookmark not defined.

MaLT+ MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 4

1 MaLT+

1.1 What is MaLT+

MaLT+ (MachineLab Turtleworlds +) is an online tool of symbolic expression in mathematical

activity by means of programming for the creation and tinkering of 3D dynamic graphical

models.

1.2 Description of MaLT+

MaLT+ consists of three distinct and yet connected work areas. These areas are called

components. As shown in figure 1, those three areas are the ‘3D scene’, the editor and the

variation tools. The three elements are being described below.

Figure 1: Screenshot of the MaLT+ environment

1.2.1 The 3D scene and the avatar

On the left side of MaLT+ appears the component of the ‘3D scene’, which also includes the

avatar. The avatar is a 3D object that you can move it in the 3D space by executing some

Logo commands. The initial 3D object of the avatar is a bird, but you may change it from a

dropdown menu at the top toolbar of the scene. The 3D scene is a surface on which the

avatar leaves its trace as it moves (unless you choose it does not leave a trace). The scene

also contains a 3d grid to help you orientate in the 3D space. The three axis (xyz) that are

used in the scene’s 3D area are shown in figure 2.

Figure 2: The three axes of 3D scene

The imaginary shape of the scene is a big invisible sphere. Thus, when the avatar moves on

the scene, it follows the sphere shape.

MaLT+ MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 5

The scene’s avatar, apart from the 3D object that represents it (bird), it is also defined by its

state, in other words by a) its position and b) its orientation. Its position is placed in the

centre of the circular object and its orientation is defined by the position of its head. As the

avatar moves, it leaves behind it a 3D trace in the form of a small cylinder. This trace has a

specific trace color (red by default), which you can change by the top toolbar of the scene.

Finally, to look at the scene from different points of view, you can rotate the camera or

zoom in / zoom out from the camera tools at the right bottom corner of the scene.

1.2.2 The Editor

In the area of the ‘Editor’ command component you may a) write whatever you want, i.e.

text, numbers, arithmetic calculations in the same way we use a word processor and b)

commands and programs that enable the avatar to change its state. This is realized with the

use of a programming language called Logo, that derives from the ancient Greek word

‘Logismos’ (Calculus), and contains a series of commands and constitutes an easy way to

define your own commands; as many as you wish. The commands control and guide the

scene’s avatar and define the changing values of its state attributes; position and

orientation. Each time a command is executed, the avatar responds immediately by creating

the relevant shape or event on the “3D scene”.

The “Editor” command area is divided in two parts:

 the area where the instructions to be executed by the avatar are written in a

symbolic way (upper part) and

 the area where responding messages are automatically written by MaLT+

environvment in accordance to the realized actions (lower part). These messages

refer either to an error in the structure of commands or to the correct definition of a

new procedure, and function as a feedback and troubleshooting guide for the user.

By using the “Editor” component you may execute commands as follows: place the cursor on

the line where the commands you want to execute are located. Press the key 'insert', usually

found in the keyboard with the initials 'ins'. Each time you press the key 'insert', Logo

executes the words of the line on which the cursor is placed from left to right. When a

command is not recognized either due to the fact that it has not been defined or because it

does not belong to the basic commands the message 'I don't know how to' appears. You can

also do the same action by clicking the play button at “Editor”’s toolbar.

Note: When you press the usual key 'enter', the cursor simply changes line without

executing any commands.

1.2.3 The Variation tools

With the ‘Variation tool’ and the ‘2D Variation tool’ components you may provoke dynamic

constant change to the shapes created by the avatar when it has been given a parametric

command that you have defined yourself (More information about the definition of new

commands in section 3.3). For stable commands without input variation and for basic

commands even with an input, the variation tools cannot be activated. The ‘Variation tool’

component changes in a constant way the value(s) of input variables that you have set for a

command. At the same time, the shape also changes dynamically. This occurs when you

drag the cursor over the variation slider. With the ‘2D Variation tool’ you may see what

happens in the shape, as you co-vary two variables, on imaginary vertical axes by freely

dragging the cursor on the interface of the component (More information about the variation

tools in section 4).

MaLT+ MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 6

2 Features of the 3D scene

This section describes the main functions of the 3D scene of MaLT+

2.1 Camera controls

As the environment of MaLT+’s scene is represented by three dimensions, a perspective

camera is available, to look at the scene from different points of view of the 3D space. The

default position of the camera is in alignment with the scene’s center, resulting in a 2D view

of the scene’s representations. However, if you rotate the camera to any direction, you will

have a 3D view of the scene. As the 3D scene is in a sphere shape, the camera moves on

the circumference of that invisible sphere.

You can control the camera by first clicking anywhere in the scene’s area and then by using

one of the following ways of control:

1. Use the following keys of your keyboard:

W or ↑: Camera turns up

S or ↓: Camera turns down

A or ←: Camera turns left

D or →: Camera turns right

E: Camera zooms in

Q: Camera zooms out

2. Use the mouse/mousepad and:

Hold the left click pressed and move the mouse, to rotate the camera along with the

mouse movement.

Hold the mouse wheel pressed and move the mouse forward: Camera Zooms in

Hold the mouse wheel pressed and move the mouse backwards: Camera Zooms out

3. Use the camera control tools at the right bottom corner of the scene. Click on the

arrows to rotate the camera on the circumference of the sphere. Click on the

buttons to zoom in/ zoom out the camera.

Note: You can reset the camera to its default position by clicking the button .

2.2 Scene’s toolbar

At the top of the 3D scene there is a toolbar with a group of tools related with the scene or

the avatar. The functions of each tools are described below.

 Eraser. Erases all the graphics drawn on the scene and returns the avatar and the

camera to its initial position 0,0,0 and rotation.

Target. Locates the avatar on the screen and moves the camera to a position where the

avatar is visible (It is used when the avatar has moved out of the camera’s field of

view).

MaLT+ MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 7

 Axes. Show or hides three help axes (x,y,z) on the avatar.

Background Color: Changes the color of the scene’s background through a color picker

Pen Color: Changes the color of avatar’s trace through a color picker

Avatar: Displays all the available avatars in a dropdown list to select from.

Help: At help menu you can find a link to this manual of MaLT+, a link to a list of all the

available Logo commands you can use in MaLT+ and also links to some examples of models

made with MaLT+ like a cube or a pyramid.

MaLT+ MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 8

1 Basic control – avatar guidance

This section describes, through symbolic instructions that are created in the editor area, the

way to control and guide the avatar.

1.1 What is a command?

As mentioned before the avatar is controlled with the application of the commands written in

the “Editor”. The command is the symbolic expression of an instruction which leads to a

specific result when executed. Each command has a unique name and is composed in a

predefined way. A command may be simple, i.e. it can be composed only by using its name

and execute a specific action, or it may include input and output parameters. These

parameters consist of numbers, words or other data. An input command consists of such

data that are indispensable for its execution. An output command is the outcome after its

execution. A command may require none, one or many inputs whereas it can have none

or one output.

In particular, the commands in MaLT+ are composed as follows:

 CommandName(space)input1(space)input2 etc.

 e.g Forward 100

Some basic MaLT+ commands regarding avatar control will be presented next together with

the way they are composed and executed.

1.2 Movement of the avatar on the surface

In order to move the avatar on “3D scene” a number of movement commands can be used

which define the way and the degree of its movement. For the avatar to move forward by a

specific number of steps the command forward should be used. The command forward has

an input which should be a number and defines the steps the avatar will proceed. This

number is written straight after the command. The result of the command is for the avatar

to move towards the direction of its head in a distance of as many steps as the value of the

number in the command input. As the avatar moves it leaves the relevant trace behind. For

example the command:

Forward(space)50

asks the avatar to move 50 steps forward. For any command written in the “Editor” to be

executed, either the button ins (INSERT) or the button located on the command editor

toolbar should be clicked, while the editor writing indicator (cursor) is on the line of

command. The result of executing the specific command is for the avatar to move 50 steps

forward towards the direction of its head.

MaLT+ MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 9

Figure 3: Avatar moves forward 50 steps

The back command which asks the avatar to move a number of steps towards the opposite

direction from the direction of its head, operates in exactly the same way.

Example:

 Back(space)50

For the avatar’s rotation and direction there are six different commands. These commands

take as input a number which defines the degrees according to which you wish to turn the

avatar’s head. These six commands are the following:

Right and Left: The avatar turns its head to the right or to the left as much degrees as the

number given as input. For example the command Right 90 asks the avatar to turn its head

90 degrees to the right. In the same way the command Left 30 asks the avatar to turn its

head 30 degrees to the left.

Up and Down: The avatar turns its head upwards (look up) or downwards (look down) as

much degrees as the number given as input. For example the command Up 90 asks the

avatar to turn its head 90 degrees upward. In the same way the command Down 30 asks

the avatar to turn its head 30 degrees downwards.

Roll_Right and Roll_Left: The avatar rotates around itself to the right (clockwise) or to

the left (anticlockwise) as much degrees as the number given as input. For example the

command Roll_Right 90 asks the avatar to rotate around itself 90 degrees clockwise. In the

same way the command Roll_Left 30 asks the avatar to rotate around itself 30 degrees

anticlockwise.

Important tips

1st Tip: Pay attention when composing a command! Between the name of the command and

its input there should be a blank space. For example, if the command ‘Forward 50’ is

written without a blank in between (‘Forward50’) the message on the editor will be «I don’t

know how to Forward50» because it does not recognize any command with such a name.

2nd Tip: Each command may be executed several times as long as the cursor is placed on

the line where the command is written and the button ins or the button is clicked. For

example, you can execute the command Forward 10 then the command Back 30 and then

again the command Forward 10.

3rd Tip: Apart from the individual execution of commands, as mentioned above, there is the

possibility of executing numerous commands simultaneously. The mode of executing

commands is per line. In particular, there are two modes of simultaneous execution of

commands.

1st mode: Serial execution on different lines (from top to bottom).

Let’s say you want to execute the following two lines of command together:

MaLT+ MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 10

forward 50

forward 30

First you select them:

and then you click on the key ins or the button for MaLT+ to run them in the same order

from top to bottom.

2nd mode: Serial execution in one line (from left to right)

Another way to run the above two commands is to write them on the same line as follows:

Forward 50 forward 30

They are then executed in the same way as one command on the line was executed (Placing

the cursor on the line and pressing the key ins or the button). MaLT+ will execute all the

commands in the line from left to right (Pay attention to the spaces between the

commands and their value inputs!).

4th Tip: The commands may take as an input integer, decimal, positive and negative

numbers.

5th Tip: Note that the command forward -20 has the same outcome as the command back

20!

6th Tip: You can undo the last command you executed by clicking the button of the

“Editor’s” toolbar.

1.3 Calculations using MaLT+

The commands in MaLT+ allow to perform calculations within the commands.

For example the command:

Forward 50+50

moves the avatar 100 steps forward towards the direction of its head. The program

perceives that the command forward has as an input the result of the addition 50+50. The

same happens with more complex calculations such as:

Forward (50-20)*3/2

The parentheses rules in mathematics apply in complex calculations. MaLT+ perceives the

calculations as separate commands as well. In other words, instead of using numerical

symbols there are commands that execute the calculation:

Eg. 30+20 is also perceived as sum 30 20

 30-10 is also perceived as difference 30 10

 30 ×10 is also perceived as product 30 10

 30/10 is also perceived as divide 30 10

forward 50

forward 30

MaLT+ MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 11

The above mode, to firstly denote the name of the result and then the numbers which are

involved in the calculation is very useful when you wish to define calculations as the

following:

Eg. 23 as power 2 3

 5 as root 5

For example, you may execute the command: Forward root 20.

For more mathematical commands see Table 2 in Appendix A.

Note: Calculation commands cannot be executed on their own in the “Editor”. For example,

if the root 36 is run nothing will happen. This happens because the calculation commands

have one output; the result of the calculation that must apply somewhere. If you want to

see the result of a mathematical command without using it in another command you have to

use the command print. The print command, displays at the message area anything that is

given as input to it. So, you write a mathematical command after the print command to print

its result to the message area.

E.g. if you execute the command print root 100 the message “From print: 10” will be

displayed in the message area, where 10 is the result of root 100.

1.4 The avatar’s trace

As mentioned above, when the avatar moves on the ‘3D scene, it leaves a trace. This trace

can be controlled by a number of commands. For example, you can define whether the

avatar leaves a trace as it moves or not. This is realized with the commands pendown and

penup, respectively. After the command penup is run, when the avatar moves it will leave

no trace, whereas in the case of the command pendown when the avatar moves will leave a

trace behind. Furthermore, there is the command cleargraphics (cg), which deletes anything

the avatar has designed so far on the ‘3D scene’ and restores the avatar to its initial position

0,0,0 with its head turned upwards, as it was initially. It also resets the camera to its default

position.

Finally, there are several commands regarding the change of colour and density of the

avatar’s trace, included in table 1 of Appendix A.

MaLT+ MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 12

3 Structural language features in MaLT+

3.1 Primitives

MaLT+ includes a number of commands and functions, as the ones described above

(forward, cleargraphics, right etc.). These commands are called primitives and possess the

following features:

 They run either a command or a function.

 They may take value inputs or not.

 They may have an output value or not.

Some basic typical primitives are presented below:

Procedure Number

of inputs

Type of input

data

Outcome-event

Cleargraphics 0 - Clears the ‘Canvas’ and restores the

avatar in its initial position

Right a 1 number Turns the avatar’s head a degrees

right

Up a 1 number Turns the avatar’s head a degrees

upwards

Penup 0 - Raises the avatar’s pen

1st Tip: The commands also have abbreviations. MaLT+ can understand the commands even

with their names written abbreviated. Eg. the command Cleargrpahics as cg, the command

right 30 as rt 30, the command left 30 as lt 30, e.t.c.

Also in the Appendix of this manual there is a table with the important procedures as well as

examples of their use.

3.2 Procedures – Sub-procedures

An important feature of MaLT+ is that it enables the user to create his own commands,

which are called ‘procedures’ and ‘sub-procedures’ in the IT language. A procedure is a

primitive command or a command to which you have given a name of your own choice and

you have defined it so that it runs a number of commands. In other words, MaLT+ allows

you to create your own additional words-commands besides the existing primitives and use

them wherever and however you wish.

Every time you define a procedure-command it has the same propperties with the primitive

commands of MaLT+. Thus, you can define a command by using another command you have

already defined. In this way you create a limitless structure of procedures and sub-

procedures.

3.3 Procedure construction

Let’s say you have edited the following commands:

MaLT+ MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 13

Forward 60

Right 90

Forward 80

Left 90

If you run these commands in this order, the following shape is created on the ‘3D scene:

You can define a procedure that will run the above commands every time in the same order

that it will be called. For this to be realized you give the command “to” and a name of your

choice for the procedure. In a separate line, after the end of the series of commands that

the new procedure will require, it is necessary to enter the word-command “end”. Don’t

forget it! In other words, the code will be:

to stair

Forward 60

Left 90

Forward 80

Left 90

End

The word “to” is a primitive MaLT+ command which is used for the definition of a new

procedure. On the right of the word “to” the word you have chosen to call the new procedure

is written (in this particular case stair). On the last line the word “end” is written which

informs the system that the procedure initiated with the word “to” has ended. To complete

the definition of the new procedure you must select all the lines and press the key ins

(insert) or the button . Then on the lower part of the “Editor” there will appear the

message «stair defined», which means that the procedure stair has been defined. From now

on you can use the word stair as a command. For example, if you write on the ‘Editor’:

stair

and run the command, the 4 commands will automatically be executed and the above shape

will be created on the ‘3D scene’. Now that the procedure stair has been defined you can run

the procedure as many times as you wish. For example, if you run 3 consecutive times the

procedure the following shape will occur:

Attention: The procedures can be named according to your wish, as long as:

MaLT+ MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 14

1st: It is only one word. The name stair up is not acceptable because it consists of two words

separated with a space. The name stair_up is acceptable.

2nd: The do not contain mathematical symbols (+ - / * etc)

3d: It is not a name that corresponds to a primitive MaLT+ command.

For example:

Acceptable names: two_squares, 2squares, square2

Not acceptable names: two squares, two-squares, Forward

For your own convenience it would be better for the names of the commands to be relevant

with what the procedure denotes.

3.3.1 Procedure inputs

The procedures can have inputs and outputs the same way as MaLT+ commands. This is

executed with the use of variables. By using a variable, the above procedure can be

realized:

to stair :height

Forward :height

Forward 90

Forward 80

Left 90

End

The height of the stair is now variable and can be defined by the user during the execution

of the procedure. For example, if you run the command as stair 100, a stair is created with a

height of 40 steps.

Attention 1: Every time you use a variable in the code, the symbol : must precede its

name. After : do not leave a space! When you use a variable in the right way, its color turns

to green.

Attention 2: The names of the variables must also be a consecutive word and shoul not

contain mathematical symbols.

Another example of the use of variables is the following:

to stair :height :width

Forward :height

Right 90

Forward :width

Left 90

End

In this example both the height and the width of the stair are variable and defined by values

that are given as inputs at the execution of the command. This procedure can be run as stair

40 80 so that a stair is created with 40 height and 80 width. It is important that you write

the variable values in the order they were defined in the procedure; in the specific example

first write the value of the height and then the value of the width.

MaLT+ MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 15

Advice: A procedure may have as input as many variables as you wish.

3.4 Sub-procedures - Hyperprocedures

MaLT+ allows for other procedures to be called within the procedures. Suppose the

aforementioned procedure stair :height :width has been defined.

You may define a new procedure which will execute the following:

to staircase :height :width

stair 30 40

stair :height :width

End

The new procedure staircase calls the procedure stair twice as a standard command. The

first time it is called with stable values whereas the second time with values that the

procedure stair itself takes as an input.

In this particular case, the procedure stair is called sub-procedure and the staircase

hyperprocedure.

Another example is the following:

to doubleStairs : height :width

stair :height :width

stair :height*2 :width*2

End

The procedure creates initially a stair with the height and width that you have defined as

parameters and then one more stair with double height and width.

The outcome from the execution of the above procedure as:

doubleStairs 20 30

is the following:

Advice: In a hyperprocedure, such as the stair, you can call many different procedures. For

example, if you had also defined a procedure stair_up, you could have called apart from this

one the procedure stair as well within the procedure staircase.

MaLT+ MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 16

4 Dynamic manipulation –Variation tools

In this section the other two components of MaLT+ are described; the ‘Variation Tool’ and

the ‘2D Variation Tool’.

4.1 The Variation Tool

The ‘Variation Tool’ allows you to dynamically manipulate the variables of a function you

have defined.

For example, you have defined the following procedure:

to staircase :height :width

stair :height :width

stair :height :width

stair :height :width

End

The procedure staircase calls 3 times the sub-procedure stair and creates three consecutive

stairs. It has two variables; :height and :width, which define the height and width of the

stairs. If you run the procedure as staircase 30 20, the avatar draws the following shape:

If you move the mouse into the ‘3D scene’ you can left click on any part of the character’s

trace. Clicking on the trace indicated in the above example the ‘Variation tool’ (the blow area

below the ‘Editor’) acquires two sliders (Figure 4).

MaLT+ MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 17

Figure 4:The variation tools corresponding to the height and width variables

In particular, these sliders correspond to the two variables of the stair :height :width

procedure and initially have the values according to which the procedure was run, namely,

:height = 30 and :width = 20. These sliders allow you to dynamically change the variable

values by moving the respective indexes and automatically observe the changes that take

place on the avatar’s trace.

From the left and right of the variation height toolbar there are two fields: “From” and “To”

which contain the numbers 15 and 60, respectively. These numbers constitute the limits

within which the height variable values change. You can change these limits and write in the

respective fields the numbers of limits that you wish. There is one more field called “Step”

which contains number 1. This entails that the variation tool can take values which differ by

one unit between the limits you have defined. You may change this as well by applying the

number you wish.

The concept of the variation tool can be applied to the formulation of open-ended problems,

such as:

 Move the indicator that corresponds to the height variation tool and observe the way

the staircase inclination changes.

 Move the indicator that corresponds to the width variation tool and observe the way

the staircase inclination changes.

 Try to figure out the relation between the height and width variables in order for the

staircase to maintain its inclination.

1.5 The 2D Variation Tool

The ‘2D Variation Tool’ allows you to represent two of the variables of a specific procedure

on an orthonormal system of co-ordinates.

Suppose you have defined the staircase procedure that was described above:

The 2

variation

tools

MaLT+ MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 18

to staircase :height :width

stair :height :width

stair :height :width

stair :height :width

End

You have already activated the ‘Variation tool’. On the left side of each slider there is a grey

right angle. By clicking on either side of the angle you can set this variable on the

corresponding axis of the rectangular axis system, represented by the ‘2D Variation Tool’.

Suppose, for example, you want to create an axis system where the vertical axis will be the

height and the horizontal axis will be the stair width. To do this, the following procedure

must be followed:

Allocation of the width variable to the horizontal axis.

Allocation of the height variable to the vertical axis.

The selected sides have changed color and turned to green.

Press

here

Press

here

MaLT+ MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 19

On the ‘2D Variation Tool’ an orthonormal system with perceptible axes has now been

created, where the vertical axis corresponds to the height variable and the horizontal one to

the width variable of the stair procedure. By pressing the key of the ‘2D Variation Tool’

you can create checkpoints on the axis system. With the key pressed and by clicking on any

point of the variation tool surface, a red point is created with specific coordinates. The height

and width variable values have automatically taken the coordinate values of this point

(Figure 5). Moving the red point on the imaginary axis system both values of the height and

width variation tools change automatically.

Figure 5:A point on the “2D Variation Tool” in MaLT+

The button of the ‘2D Variation Tool’ projects a grid on the axis system whereas the

button «clears» the variation tool from all the points that have been created.

Free dragging

If the button is not pressed, dragging the mouse on the surface of the ‘2D Variation Tool’

with the left key of the mouse continuously pressed you can design lines which correspond

to the changes occurring on the shape created by the avatar.

1.6 An example

Suppose you want to study the fact that the maintenance of the staircase inclination

demands that the ratios of the height and width sizes remain stable. The ‘2D Variation Tool’

helps on the study of the two sizes graphical relation and the inferences concerning the

inclination and graphs of similar amounts. Suppose the ratio equals 2, in other words

height/width=2. Try to place the red point on the ‘2D Variation Tool’ in a position where the

height/width ratio values equals three. If you place some more blue points in different

The red point

coordinates are

(19,40)

MaLT+ MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 20

positions where the ratio of the two variables equals three, the following point set-up will

occur:

Figure 6: The 2D variation tool

Notice that the points make a straight line with a stable inclination. This line also constitutes

the height/width=2 graph function. The rationale of the ‘2D Variation Tool’ can be applied to

the formulation of open-ended problems, such as:

 Move the mouse freely on the surface of the ‘2D Variation Tool’ and try to understand

from the created trace the way the variables correlate in order for certain conditions

to be met.

MaLT+ MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 21

2 Repetition structure

MaLT+ allows for the use of a repetitive structure in the editor’s code. This structure is a

primitive which is used for the better flow and organization of the code commands. Suppose

you want to define a procedure which results to the formation of a variable shaped

parallelogram. One way to do this is the following:

to parallelogram :a :b :angle

Forward :a

Right :angle

Forward :b

Right 180-:angle

Forward :a

Right :angle

Forward :b

Right 180-:angle

End

This code defines the parallelogram procedure whose commands formulate a parallelogram.

With the use of the repetition structure, the code to be repeated can be written only once.

Therefore, the above code becomes:

to parallelogram :a :b :angle

Repeat 2 [Forward :a

Right :angle

Forward :b

Right 180 - :angle

]

End

The word “repeat” is a MaLT+ primitive repetition command. The number that follows it

denotes the times the command is repeated (in the specific case 2). The commands inside

the brackets [] are the ones the avatar will repeat as many times as defined by the number.

Generally, the repetition structure is defined as:

Repeat repetition_times [commands_to_be_repeated]

The repetition structure is very useful since with its application lengthy codes with repetitive

commands are avoided. Therefore, it helps in the syntax of a legible and structured code.

Attention!! It is mandatory to close every open bracket.

The commands called upon in the brackets could be any MaLT+ commands procedures

defined by the user. Moreover, the number of repetitions could be a variable. For example

the following procedure could be defined:

Repeated code!!

MaLT+ MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 22

to parallelograms :times :a :b :angle

Repeat :times [parallelogram :a :b :angle right 30]

End

The parallelograms procedure repetitively calls the parallelogram procedure, set above, as

many times as the variable value :times defines. Thus, for example, the execution:

Parallelograms 4 30 50 60

Has the following outcome on the ‘3D scene:

Another example is the creation of a cube, by using four squares.

First we define the procedure square, which executes 4 times the commands:

Forward :a

Right 90

To do that we write at the editor:

For square :a

repeat 4 [Forward :a

right 90

]

End

The procedure square creates a square of variable size.

 Then we define the procedure cube :a like this:

To cube :a

Repeat 4 [

 square :a

 forward :a

 down 90

]

End

The procedure cube :a creates a cube consisted by 4 squares. This is done by repeating 4

times: run the procedure square then move forward the number of the side and then turn

downwards 90 degrees.

MaLT+ MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 23

If we run the procedure cube as cube 60 the avatar will draw the cube shape showing in

picture :

MaLT+ MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 24

3 Recursive procedures

In the Hyperprocedures and sub-procedures section the way one procedure is called within

another was described. MaLT+ also allows for a procedure to call itself. This is called

“recursion”. Suppose you have defined the following procedure concerning the formation of a

circle with radius r:

to circle :r

repeat 36 [forward (2*pi*:r)/36 right 10]

end

Suppose you have also defined the procedure:

for butterfly :r

repeat 2 [circle :r rt 180]

end

which formulates two externally tangent circles, as shown in the following figure:

An example of the use of recursion in this procedure, is the following

to butterfly :n :r

if :n < 1 [stop]

repeat 2 [circle :r rt 180]

butterfly :n-1 :r-10

end

What is accomplished with the butterfly procedure above is the formation of two tangent

circles and calling upon itself by applying a radius reduced by 10 (:r–10). This is done for

:n times. Therefore, if you run the procedure as butterfly 5 50, the avatar creates the

following shape:

Recursion: The

procedure calls upon

itself!

MaLT+ MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 25

4 Conditional commands

In the butterfly example in the previous section the following command was found within the

code of the procedure:

if :n < 1 [stop]

This is a MaLT+ control command. These commands allow you to check the code execution

flow of a procedure based on certain conditions that you define. In the specific case we deal

with the “if” command. The “if” command checks the condition that follows right after (in

the specific :n < 1). If the condition applies, the procedure runs the commands written in

the brackets [].

Suppose the following procedure has been defined:

to stair :height :width

If :height < 5 [stop]

Forward :height Right 90 Forward :width Left 90

End

The command If checks at this point if the condition :height < 5 is true. If it is true then it

will run the stop command, otherwise, if it is false it will ignore the brackets and continue

normally with the execution of the following commands. The stop command is a MaLT+

primitive command which stops the execution of any procedure run at the same time. Thus,

if the height has a value less than 5, the procedure will immediately stop and the commands

concerning the formation of the stair will not be executed.

So for example, if it is executed as:

stair 4 10

the avatar will not do anything, since the condition is true.

But if it is executed as

stair 6 10

The avatar will create a stair.

Note: An inequality or equation of any two elements can be applied as a condition.

Condition examples:

:height = 5

:height > :width

:height + 3 < 20

4.1 Control commands in recursion

The control commands are very useful in the recursive procedures. For example in the

butterfly procedure of the previous section:

MaLT+ MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 26

to butterfly :n :r

if :n < 1 [stop]

repeat 2 [circle :r rt 180]

butterfly :n-1 :r-10

end

If there wasn’t for the if command, the butterfly procedure would call upon itself to infinity.

By applying control commands you define when the execution of a recursive procedure

discontinues. Thus, if you run the butterfly procedure as butterfly 5 50, what MaLT+ does is

the following:

Initially, it runs the butterfly procedure with the values :n=5 and :r=50. The if control

condition checks whether :n is less than 1. When it gets less than 1, the execution of the

procedure will cease. For the time being, this does not apply and therefore the execution

continues formulating two tangent circles with a radius of 50. Next it calls upon itself with

the n value reduced by 1 and the r value reduced by 10. In this case :n=4 and :r=40.

The execution continues in the same way until it calls upon itself for :n=0. Then the control

command will be true and the procedure will cease after it has been run for 5 times (as

many as the n initial value).

The following table shows in detail the :r and :r values during all the recursion running

stages:

Execution flow Value :n Value :r

Control

condition

:n < 1

Recursion command

values

(butterfly :n-1 :r-10)

1st 5 50 FALSE butterfly 4 40

2nd 4 40 FALSE butterfly 3 30

3rd 3 30 FALSE butterfly 2 20

4th 2 20 FALSE butterfly 1 10

5th 1 10 FALSE butterfly 0 0

6th 0 0 TRUE -

5 Other MaLT+ features

5.1 Save files

In MaLT+ you can save your work in a file at your computer. Then, you may open this file

again with MaLT+ and continue your work from the point you saved it.

There are two different ways to save a file locally:

1. You can save only the Logo Code of the ‘Editor’ by clicking the button of ‘Edtior’s’

toolbar. In that case you will save only the text that is written in the ‘Editor’ area. The file

will be downloaded at the folder where the downloads of your browser are being saved.

(Usually it is the folder ‘Downloads’).

MaLT+ MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 27

When you open this file again with MaLT+, the code you have saved will be loaded at the

‘Editor’.

2. You can save the whole state of the MaLT+ by clicking the button of ‘Editor’s’ toolbar.

More specifically, when saving the whole state, the following attributes will be saved:

a) The Editor’s contents (Logo code, text etc)

b) The current trace on the scene

c) The current camera’s position

d) The sliders of the variation tool(if they are activated) and their current values

e) The notes of the notepad

f) The current avatar of the scene (bird/airplane etc)

The save of the state described above is done with the button (save all). The file will be

downloaded at the folder where the downloads of your browser are being saved. (Usually it

is the folder ‘Downloads’).

When you open this file again with MaLT+, all the above elements will load the state they

had at the time you saved the file.

Attention: When you click either of both save buttons, a pop window will appear that will

ask you to give a name for the file you want to save. Type the filename you want and then

click the OK button. If another pop up window appears displaying the options “Open” and

“save file” check the option “Save file” and click OK again.

5.2 Open files

You can open saved files of both types described above(just Logo code or whole state) by

clicking the button of ‘Editor’s’ toolbar. When you open a file all the saved attributes are

being restored to the state they where saved.

5.3 Other features

Some other features of MaLT+ environment are described bellow.

Notepad

MaLT+ has a notepad where you can keep free notes. To make the notepad visible click the

button . As mentioned before, your notes can be saved together with the whole state of

the MaLT+ by clicking the save all button.

Windows maniputlation

You have the possibility, if you want, to move the widows of the ‘Editor’, the variation tools

and the notes, anywhere you wand in MaLT+ environment. To move a window, left click on

the blue bar on the its top and while holding the left click pressed, move the window at the

position you want and release the left click(drag and drop). You may also change the

dimensions of those windows according to your preferences.

With the button which is located left of the 3D scene, you can restore the windows to

their initial positions and dimensions.

Language settings

MaLT+ is available in both Greek and English language. You can change the language by

clicking the language button at the right top corner of the MaLT+.

MaLT+ MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 28

Appendix A – Tables of Commands

Table 1: Avatar control commands

Command Description Example

Avatar’s movement

forward number

or

fd number

Avatar moves forward as

many steps as the number

value

fd 50

back number

or

bk number

Avatar moves backward as

many steps as the number

value

bk 50

Avatar’s orientation

Right number

or

rt number

Avatar turns its head to the

right by as many degrees as

the number value

right 90

left number

or

lt number

Avatar turns its head to the

left by as many degrees as

the number value

lt 90

Up number

Avatar turns its head upwards

(looks up) by as many

degrees as the number value

up 50

down number

or

dn number

Avatar turns its head

downwards (looks down) by

as many degrees as the

number value

down 50

roll_right number

or

rr number

Avatar rotates around itself

clockwise by as many

degrees as the number value

rr 30

roll_left number

or

rl number

Avatar rotates around itself

anticlockwise by as many

degrees as the number value

rl 30

Avatar’s position

Setx number Places the avatar at the

position where x coordinate

equals to the number

Setx number

Sety number Places the avatar at the

position where y coordinate

equals to the number

Sety number

Setz number Places the avatar at the

position where z coordinate

equals to the number

Setz number

MaLT+ MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 29

Setxy n1 n2

Places the avatar at the

position where x coordinate

equals to the n1 and y

coordinate equals to n2

Setxy 50 100

Setxz n1 n2 Places the avatar at the

position where x coordinate

equals to the n1 and z

coordinate equals to n2

Setxz 50 -90

Setyz n1 n2 Places the avatar at the

position where y coordinate

equals to the n1 and z

coordinate equals to n2

Seyz 50 -90

Setpos [n1 n2 n3] Places the avatar at the

position with the coordinates

n1 n2 n3

Setpos [0 0 0]

Home Avatar returns to initial

position 0 0 0

Xcor Returns the value of the x

coordinate of avatar’s current

position

Ycor Returns the value of the y

coordinate of avatar’s current

position

Zcor Returns the value of the z

coordinate of avatar’s current

position

Pos Returns the avatar’s current

position in an array of three

numbers [x y z]

Distanceto [x y z] Calculates and returns the

distance between the avatar’s

position and the point give as

an array input of [x y z]

Distanceto [100 20 30]

Avatar’s Trace

Penup/pu The avatar doesn’t leave a

trace while moving in the

scene

Pendown/pd The avatar leaves a trace while

moving in the scene

Setpensize number Sets the width of the trace to

the value of number (Default

is 3)

Setpensize 5

setpencolor [r b g] Sets the color of the trace to

the color code of the r b g

array (red blue green)

setpencolor [0 0 0]

(Black)

Clean Clears the 3D scene and lets

the avatar in its current

position

Clearscreen/

cleargraphics/cs

Clears the 3D scene and resets

the avatar to its initial position

0 0 0

Showturtle/st/ Shows the avatar on the scene

MaLT+ MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 30

Hideturtle/ht Hides the avatar from the

scene

Other Commands

Cleartext Clears the messages from the

message area

Print input Prints at the message area the

output of the input . The input

may be a command, a

mathematical expression or a

variable.

print 1+1

print xpos

print :height

Basic colour codes RBG for the avatar’s change of colour

Red 255 0 0

Green 0 255 0

Blue 0 0 255

Black 255 255 255

Yellow 255 255 0

Orange 255 128 0

White 0 0 0

You can find more color codes at MaLT’s color picker.

Table 2: Programming structures

Command Description Example

Conditional Structures

If condition

[comamnds]

If the condition is true, the

group of commands inside

the brackets [] is

executed.

If :x > 10 [

Forward 100

Right 90]

Ifelse condition

[comamnds1]

[comamnds2]

If the condition is true the

group of commands1 of

the first brackets is

executed, else if the

condition is false the group

of commands2 of the

second brackets is

executed.

Ifelse :x > 10 [

Forward 100

Right 90]

[Left 90

Forward 100

]

Iterative structures

Repeat n

[commands]

The group of commands

inside the brackets [] is

Repeat 4 [

Forward 100

MaLT+ MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 31

repeated n times. rt 90]

While condition

[commands]

Or

dowhile condition

[commands]

While the condition is

true the group of

commands inside the

brackets [] is repeated.

While :x<5 [

Forward 100

rt 90

make “x :x+1

]

Until condition

[commands]

Until the condition

becomes true, the group

of commands inside the

brackets [] is repeated.

make "x 0

until :x = 4 [

fd 100 rt 90

make "x :x+1

]

Repcount Returns the current

repetition number. It is

used in repeat n structure

Operators

Or Expr1 Expr2 Returns true if at least one

of the two expressions is

true

If or 2>3 4<5 [print

‘true’] (it is true)

And Expr1 Expr2 Returns true if both of the

two expressions is true

If and 2>3 4<5

[print ‘true’] (it is

false)

Not Expr1 Επιστρέφει αληθές αν ! 2>3 [τύπωσε

'αληθής'] (είναι

αληθής)

equal? Value1 Value2 Returns true if value1 is

equal to value2

If equal?:a :b [

print ‘equal’]

Notequal? Value1

Value2

Returns true if value1 is

not equal to value2

If Notequal?:a :b [

print ‘ not equal’]

greater? Value1

Value2

Returns true if value1 is

greater than value2

if greater?:a :b [print

‘a bigger’]

Less? Value1 Value2 Returns true if value1 is

less than value2

If Less? :a :b [print

‘a smaller’]

greaterequal? Value1

Value2

Returns true if value1 is

greater or equal to value2

lessequal? Value1

Value2

Returns true if value1 is

less or equal to value2

Make “variable

number

Defines the variable and

assigns to the variable the

value of the number. Then

it can be used as :variable

Make “height 30

(:height will have the

value 30)

Rand/random α Returns a random

number between 0 and a

Rand 4 (returns

randomly a number

among 0, 1, 2, 3, 4)

Output value Stops the procedure and

returns the value. It is

used inside procedures

To add :a :b

return :a + :b

end

MaLT+ MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 32

Table 3: Mathematical commands

Command Description Example Result

Sum/add a b Returns the sum of the

two numbers set in its

input, i.e. it performs

a+b

Sum 3 5 8

Difference/sub

a b

Returns the difference

of the two numbers set

in its input, i.e. it

performs a-b

Difference 8

3

5

Product/mul

a b

Returns the product of

the two numbers set in

its input, i.e. it performs

a*b

Product 2 4 8

Divide/div a b Returns the division of

the two numbers set in

its input, i.e. it performs

a/b

Divide 6 3 2

Remainder/mo

dulo/mod a b

Returns remainder of

division of the two

numbers set in its input

Remainder

11 2

1

Sqrt number Gives the square root of

the number set in its

input

Sqrt 36 6

Power/pow x

n

It raises the x number

to the n power and

returns the result. Thus,

it is xn

Power 2 4 16

Cos degrees It returns the cosine of

the angle set as an

input

Cos 60 0.5

Sin degrees It returns the sine of

the angle set as an

input

Sin 60 0.866

Tan degrees It returns the tangent

of the angle set as an

input

Tan 180 0

Arccos

argument

It returns the angle it

calculates from the
inverse cosine based on

the argument set as an

input

Arccos 0.5 60

MaLT+ MANUAL

EDUCATIONAL TECHNOLOGY LAB (ETL) 33

Arcsin

argument

It returns the angle it

calculates from the
inverse sine based on

the argument set as an

input

Arcsin 0.5 30

Arctan

argument

It returns the angle it

calculates from the
inverse tangent based

on the argument set as

an input

arctan 1 45

Radcos rads It returns the cosine of

the angle given in radius

(rads)

Radcos 1 0.54030230

58681398

Radsin rads It returns the sin of the

angle given in radius

(rads)

Radsin 1 0.84147098

48078

Exp number It returns the

exponential function

with a base of e and as

a power the number set

in its input (enumber)

Exp 1 2.718

Ln number It returns the ln value of

the number set as an

input

Ln 1 0

log10 number It returns the log10 set

as an input

Log10 10 1

Integer/int

number

It returns the integer

part of the number set

as an input

Integer 2.8 2

Round number It returns the rounding

of the number set in its

input

Round 2.3

Round 3.8

2

4

Minus number It returns the minus of

the number set as an

input

Minus 10 -10

Abs number It returns the absolute

value of the number set

as an input

Abs -10 10

pi It returns the pi (3,14)

number

pi 3.14

